

Tetrahedron Letters 41 (2000) 2289-2293

TETRAHEDRON LETTERS

An NMR method for determination of configuration of β-substituted carboxylic acids

Thomas R. Hoye,[∗] Abdel-Sattar S. Hamad,† Dmitry O. Koltun and Manomi A. Tennakoon

Department of Chemistry, 207 Pleasant Street SE, University of Minnesota, Minneapolis, MN 55455, USA

Received 10 December 1999; accepted 17 January 2000

Abstract

The absolute configuration of the stereogenic center at the β -position of a carboxylic acid can be determined via derivatization with chiral benzylic amines [PhCH(Me)NH₂ or 1-NpCH(Me)NH₂]. Acids of known configuration and with a variety of β-substituents were subjected to derivatization. Analysis of the signs of the chemical shift differences of substituent protons permits determination of the absolute configuration. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: carboxylic acids; configuration; NMR spectroscopy; stereochemistry.

NMR-based methods for determination of the absolute configuration of stereogenic centers are popular in modern organic chemistry.¹ Their main advantages are availability of instrumentation, low cost, and easy derivatization techniques. Typically, the derivatization is necessary to convert a compound with an isolated stereogenic center into a pair of diastereomers, which possess different NMR properties. Several methods for assignment of absolute configuration of the stereogenic center in a position beta to the site of functionalization (1) have been developed. These include the Mosher MTPA/Eu(fod) 3^{2a} or the anthrylmethoxyacetate (AMA)2b analyses of primary alcohols (**2a**), the Pirkle isocyanate method for amines $(2b)$,³ and the ephedrine-derived oxazolidinone method for aldehydes $(2c)$.⁴ We have recently reported the use of amides derived from 1-phenylethylamine or 1-(1-naphthyl)ethylamine for determination of absolute configuration of β-methyl-substituted carboxylic acids $(3, R_1=Me, R_2 \neq Me)^5$

Carboxylic acids 3 with substituents other than a methyl group at $C(3)$ were of interest to us since they are abundantly present in natural compounds.⁶ We decided to investigate the extension of our method

Corresponding author. E-mail: hoye@chem.umn.edu (T. R. Hoye)

[†] Present address: Chemistry Department, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt.

^{0040-4039/00/\$ -} see front matter © 2000 Elsevier Science Ltd. All rights reserved. *P I I:* S0040-4039(00)00163-5

to include this broader spectrum of acid substrates. Chemical shift trends in the diastereomeric pairs of 1-phenylethylamides and 1-(1-naphthyl)ethylamides derived from several such β-substituted carboxylic acids have now been studied and we present the results here.

The synthesis of the diastereomeric amides is shown in Scheme 1. 3-Phenylglutaric acid (**4**) was converted into 3-phenylglutaric anhydride (**5**) and then ring-opened with *R*-1-phenylethylamine or *R*-1-(1-naphthyl)ethylamine to give diastereomeric mono-amide mono-acids (∼2:1 ratio of diastereomers in each case). The acids were esterified with DMF·dimethyl acetal. Diastereomers of each phenyl- (**6**) and naphthyl-containing (**7**) amide were separated by MPLC on silica gel. The relative configuration for the two diastereomers of **6** and of **7** is assigned by analogy with the sense of ring opening of 3 methylglutaric anhydride (to provide **15** and **16**) as we previously reported.⁵ A similar strategy was employed starting with tricarballylic acid (**8**) to give (after opening of anhydride **9** 7 and esterification) diastereomeric mixtures of amides **10** and **11**.

Scheme 1. Reagents and conditions: (i) Ac₂O solvent, rt, 24 h; (ii) (1) *R*-1-phenylethylamine or *R*-1-(1-naphthyl)ethylamine, 2 equiv., 24 h, CH₂Cl₂;⁸ (2) dimethylformamide dimethyl acetal, CH₂Cl₂, 24 h, 45–55% for two steps; (iii) *R*-1-phenylethylamine or *R*-1-(1-naphthyl)ethylamine, DCC, DMAP cat., CH₂Cl₂, 24 h, 60–65%; (iv) MeCOCl/MeOH, 1 h, rt, 52–95%

To unambiguously prove the relative configuration of the *syn-* and *anti-*diastereomers of **10** and of **11**, *S*-tricarballylic acid bis-*t*-butyl ester (**12**) was synthesized in an enantiomerically enriched form according to the literature procedure.⁹ DCC-mediated coupling under standard conditions led to the formation of amides **13** and **14**. Each of these amides was treated with HCl in methanol to form their corresponding diastereomeric esters **10** and **11**, thereby permitting unambiguous assignment of the relative configuration of each.

As expected, meaningful differences were observed in chemical shifts of various protons associated with the $R¹$ and $R²$ substituents at C(3) in each pair of diastereomeric amides. These results are presented in Table 1,¹⁰ along with those of the 3-methyl glutaramide derivatives **15** and **16** we reported earlier.⁵ The difference [expressed in $\Delta\delta$ units, where $\Delta\delta = \delta$ (*syn*)– δ (*anti*)] is always positive for the R¹ substituent and negative for the R^2 substituent (cf. Fig. 1). Observed magnitudes of chemical shift differences are consistent with our earlier observation that the 1-naphthyl group usually provides a larger anisotropic shielding effect than the phenyl group.⁵

2290

Table 1 ¹H NMR $\Delta\delta$ values for amides derived from β-chiral acids with known relative configurations

syn-Amides		anti-Amides		$\Delta \delta = \delta$ (syn) - δ (anti)	
MeC		Me $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($	15 Ar = Ph ^a 16 Ar = 1-Np ^a	$\Delta \delta$ (Me) $+0.013$ $+0.019$	$\Delta \delta$ (CO ₂ Me) -0.015 -0.032
MeO		O Me O Me 6 Ar = Ph		$\Delta \delta$ (Ph) not resolved	$\Delta \delta$ (CO ₂ Me) -0.019 -0.070
MeO		Me $\begin{matrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{matrix}$ Me $\begin{matrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{matrix}$ Me $\begin{matrix} 10 & 0 & -Ph \\ 11 & Ar = 1-Np \end{matrix}$		$\Delta \delta$ (CHCOMe) $+0.034$ $+0.062$	$\Delta \delta$ (CH ₂ CO ₂ Me) -0.016 -0.037
t-BuO	$\begin{bmatrix} 0 & Me \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ Ar Ņ H	O ^O O ^{t-Bu} N ^o Me Ar 13 Ar = Ph Ar 14 Ar = 1-Np t-BuO		Δδ(CHCO ₂ t-Bu) $+0.019$ $+0.025$	Δδ(CH ₂ CO ₂ t-Bu) -0.013 -0.037

A useful conformational model that accounts for the observed signs of the chemical shift differences between the *syn* and *anti* diastereomers is shown in Fig. 1. It is based on two assumptions: (i) the predominant rotamer around the benzylic carbon to nitrogen bond is that having the benzylic proton eclipsed with the carbonyl group; (ii) one of the two non-hydrogen substituents at C(3) essentially always occupies the *anti* position relative to the carbonyl group, forcing the other non-hydrogen substituent *gauche* to the carbonyl. In the case of the *anti*-diastereomer, this results in preferential anisotropic shielding of the $R¹$ substituent by the aromatic phenyl or 1-naphthyl group. In the case of the *syn*-

Fig. 1. Conformational model for determination of the sign of $\Delta \delta = \delta$ (*syn*)– δ (*anti*) or protons in R¹ and R²

diastereomer, preferential shielding of the R^2 substituent is observed. It follows that the $\Delta\delta$ [= δ (*syn*)– δ (*anti*)] values of protons in \mathbb{R}^1 are positive and those in \mathbb{R}^2 are negative (cf. Table 1).

In conclusion, the NMR strategy for determination of the absolute configuration of a stereogenic center in the β-position of a carboxylic acid has been extended to include a variety of (non-methyl) βsubstituents. The strategy involves derivatization of the acid with each enantiomer of 1-phenylethylamine or $1-(1-naphthyl)$ ethylamine and measurement of the chemical shifts of groups attached to $C(3)$.

Acknowledgements

This work was supported in part by the National Institutes of Health and an Egyptian Ministry of Education Fellowship (to A.-S.S.H.). We thank Drs. Maren Pink and Victor J. Young of the University of Minnesota X-ray Crystallographic Laboratory for determination of the structure of *syn-***vi**.

References

- 1. (a) Yamaguchi, S. In *Asymmetric Synthesis*; Morrison, J. D., Ed. Analytical methods; Academic Press: New York, 1983; Vol. 1, pp. 125–152. (b) Parker, D. *Chem. Rev*. **1991**, *91*, 1441. (c) Uray, G. In *Houben–Weyl Methods in Organic Chemistry*; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Thieme: Stuttgart, New York, 1996; Vol. 1, p. 253.
- 2. (a) Yasuhara, F.; Yamaguchi, S. *Tetrahedron Lett.* **1977**, *18*, 4085. cf. (b) Latypov, S. K.; Ferreiro, M. J.; Quiñoá, E.; Riguera, R. *J. Am. Chem. Soc.* **1998**, *120*, 4741.
- 3. For example, see: (a) Pirkle, W. H.; Simmons, K. A. *J. Org. Chem*. **1983**, *48*, 2520. (b) Pirkle, W. H.; Robertson, M. R.; Hyun, M. H. *J. Org. Chem*. **1984**, *49*, 2433.
- 4. Agami, C.; Meynier, F.; Berlan, J.; Besace, Y.; Brochard, L. *J. Org. Chem*. **1986**, *51*, 73.
- 5. Hoye, T. R.; Koltun, D. O. *J. Am. Chem. Soc.* **1998**, *120*, 4638.
- 6. A search of the Beilstein database indicates that there are over 350 known natural products that contain the substructure shown in 3 in which R^1 and R^2 are both carbon substituents. A nearly equal number are known in which one of the two is a hetereoatom substituent.
- 7. (a) Nuzzo, R. G.; Haynie, S. L.; Wilson, M. E.; Whitesides, G. M. *J. Org. Chem*. **1981** *46*, 2861. (b) Reaction of anhydride **9** with ArCH(Me)NH² gave (following esterification) a ∼3 to 1 ratio of the diastereomeric amides **10** (∼1.2:1) or **11** (∼1.5:1) to the symmetrical amide, ArCH(Me)NHCOCH(CH₂CO₂Me)₂, arising from amine attack at the α-branched carbonyl group.
- 8. In the case of tricarballylic acid anhydride, products arising from α- and β-openings were separated using MPLC.
- 9. Iwasawa, Y.; Shibata, J.; Nonoshita, K.; Arai, S.; Masaki, H.; Tomimoto, K. *Tetrahedron* **1996**, *52*, 13 881.
- 10. We have found additional examples of analogous amide derivatives of 3-substituted carboxylic acids (**i**–**vi**) that complement the NMR data reported in Table 1. The $\Delta \delta$ [= δ (*syn*)– δ (*anti*)] value for the relevant protons of the two diastereomers is indicated (with sign) directly beside the relevant proton.

2292

(a) Sita, L. R. *J*. *Org*. *Chem*. **1993**, *58*, 5285. (b) Huffman, J. W.; Lainton, J. A. H.; Banner, W. K.; Duncan, S. G.; Jordan, R. D.; Yu, S.; Dai, D.; Martin, B. R.; Wiley, J. L.; Compton, D. R. *Tetrahedron* **1997**, *53*, 1557. (c) Yamamoto, Y.; Iwasa, M.; Sawada, S.; Oda, J. *Agric*. *Biol*. *Chem*. **1990**, *54*, 3269. (d) Yamamoto, Y.; Yamamoto, K.; Nishioka, T.; Oda, J. *Agric*. *Biol*. *Chem*. **1988**, *52*, 3087. (e) Chapleo, C. B.; Hallett, P.; Lythgoe, B.; Waterhouse, I.; Wright, P. W. *J. Chem Soc., Perkin 1* **1977**, 1211. (f) Nagao, Y.; Ikeda, T.; Inoue, T.; Yagi, M.; Shiro, M.; Fujita, E. *J. Org. Chem.* **1985**, *50*, 4072.¹¹

11. The signs of the ∆*δ* values for diastereomers **vi** deduced from Ref. 10f are opposite to those that our method predicts. Concerned that this represents an exception to our method, we independently synthesized each of *syn*-**vi** and *anti*-**vi** and unambiguously determined the relative configuration of *syn*-**vi** by single crystal X-ray analysis. It is now clear that the ¹H NMR data in Ref. 10f are reversed for *syn*-**vi** and *anti*-**vi** (although the mp and specific rotation values as reported are associated with the correct diastereomeric structures). The signs and magnitudes of the ∆*δ* values shown in structure **vi** above are from our NMR data and are unambiguously consistent with the method.